Mathematical Model Can Potentially Identify Sleep-Related Treatment Targets for Fibromyalgia

Mathematical Model Can Potentially Identify Sleep-Related Treatment Targets for Fibromyalgia
A research team at the Department of Mathematics of Boston University in collaboration with the divisions of Sleep Medicine, Endocrinology, Diabetes and Hypertension from the Brigham and Women's Hospital identified a potential target to restore normal sleep in patients with fibromyalgia (FM). The study entitled “Thalamic Mechanisms Underlying Alpha-Delta Sleep with Implications for Fibromyalgia” was published August 5, 2015 in Journal of Neurophysiology. Fibromyalgia is a syndrome characterized by chronic widespread pain from an unidentified source. Patients with fibromyalgia also have chronic daytime fatigue and sleep disturbances. Previous studies indicate that sleep and pain are associated, supporting the role of sleep disruption in the development of fibromyalgia symptoms. When healthy, middle-aged women were sleep deprived for three days, they showed a decreased tolerance for pain and increased fatigue similar to fibromyalgia patients. Researchers have also reported that fibromyalgia is associated with an alteration of slow wave sleep, the deepest stage of sleep characterized by delta waves in an electroencephalogram (ECG). In FM patients, there is an interference of brain alpha waves, known as alpha activity, typical of wakefulness. Since there are no available animal models of fibromyalgia to address drug’s efficacy and their effect in sleep disturbances, this research team established a biophysically-based mathematical model. They based their model in the neural abnormalities observed in fibromyalgia and in the molecu
Subscribe or to access all post and page content.

Leave a Comment

Your email address will not be published. Required fields are marked *